Assignment #9 (demo). Time series analysis. Solution

Assignment #9 (demo). Time series analysis. Solution#

mlcourse.ai – Open Machine Learning Course

Author: Mariya Mansurova, Analyst & developer in Yandex.Metrics team. Translated by Ivan Zakharov, ML enthusiast.
This material is subject to the terms and conditions of the Creative Commons CC BY-NC-SA 4.0 license. Free use is permitted for any non-commercial purpose.

Same assignment as a Kaggle Notebook + solution.

In this assignment, we are using Prophet and ARIMA to analyze the number of views for a Wikipedia page on Machine Learning.

Fill cells marked with “Your code here” and submit your answers to the questions through the web form.

import warnings

warnings.filterwarnings("ignore")
import os

import numpy as np
import pandas as pd
import requests
from plotly import __version__
from plotly import graph_objs as go
from plotly.offline import download_plotlyjs, init_notebook_mode, iplot, plot
from IPython.display import display, IFrame

print(__version__)  # need 1.9.0 or greater
init_notebook_mode(connected=True)
6.1.1
def plotly_df(df, title="", width=800, height=500):
    """Visualize all the dataframe columns as line plots."""
    common_kw = dict(x=df.index, mode="lines")
    data = [go.Scatter(y=df[c], name=c, **common_kw) for c in df.columns]
    layout = dict(title=title)
    fig = dict(data=data, layout=layout)

    # in a Jupyter Notebook, the following should work
    #iplot(fig, show_link=False)

    # in a Jupyter Book, we save a plot offline and then render it with IFrame
    plot_path = f"../../_static/plotly_htmls/{title}.html".replace(" ", "_")
    plot(fig, filename=plot_path, show_link=False, auto_open=False);
    display(IFrame(plot_path, width=width, height=height))

Data preparation#

# for Jupyter-book, we copy data from GitHub, locally, to save Internet traffic,
# you can specify the data/ folder from the root of your cloned
# https://github.com/Yorko/mlcourse.ai repo, to save Internet traffic
DATA_PATH = "https://raw.githubusercontent.com/Yorko/mlcourse.ai/main/data/"
df = pd.read_csv(DATA_PATH + "wiki_machine_learning.csv", sep=" ")
df = df[df["count"] != 0]
df.head()
date count lang page rank month title
81 2015-01-01 1414 en Machine_learning 8708 201501 Machine_learning
80 2015-01-02 1920 en Machine_learning 8708 201501 Machine_learning
79 2015-01-03 1338 en Machine_learning 8708 201501 Machine_learning
78 2015-01-04 1404 en Machine_learning 8708 201501 Machine_learning
77 2015-01-05 2264 en Machine_learning 8708 201501 Machine_learning
df.shape
(383, 7)

Predicting with FB Prophet#

We will train on the first 5 months and predict the number of trips for June.

df.date = pd.to_datetime(df.date)
plotly_df(df=df.set_index("date")[["count"]], title="assign9_plot")
from prophet import Prophet
predictions = 30

df = df[["date", "count"]]
df.columns = ["ds", "y"]
df.tail()
ds y
382 2016-01-16 1644
381 2016-01-17 1836
376 2016-01-18 2983
375 2016-01-19 3389
372 2016-01-20 3559
train_df = df[:-predictions].copy()
m = Prophet()
m.fit(train_df)
10:43:02 - cmdstanpy - INFO - Chain [1] start processing
10:43:02 - cmdstanpy - INFO - Chain [1] done processing
<prophet.forecaster.Prophet at 0x158db52b0>
future = m.make_future_dataframe(periods=predictions)
future.tail()
ds
378 2016-01-16
379 2016-01-17
380 2016-01-18
381 2016-01-19
382 2016-01-20
forecast = m.predict(future)
forecast.tail()
ds trend yhat_lower yhat_upper trend_lower trend_upper additive_terms additive_terms_lower additive_terms_upper weekly weekly_lower weekly_upper multiplicative_terms multiplicative_terms_lower multiplicative_terms_upper yhat
378 2016-01-16 2977.168399 1701.742621 2496.526531 2956.300983 2998.268438 -861.727923 -861.727923 -861.727923 -861.727923 -861.727923 -861.727923 0.0 0.0 0.0 2115.440476
379 2016-01-17 2982.524268 1865.316607 2664.209429 2960.282415 3005.035825 -720.760235 -720.760235 -720.760235 -720.760235 -720.760235 -720.760235 0.0 0.0 0.0 2261.764034
380 2016-01-18 2987.880138 2880.057162 3672.672982 2964.704694 3011.561143 281.393573 281.393573 281.393573 281.393573 281.393573 281.393573 0.0 0.0 0.0 3269.273711
381 2016-01-19 2993.236008 3107.390591 3921.247857 2969.107310 3018.597086 541.459498 541.459498 541.459498 541.459498 541.459498 541.459498 0.0 0.0 0.0 3534.695506
382 2016-01-20 2998.591877 2992.940380 3821.484388 2972.969987 3025.147112 425.524867 425.524867 425.524867 425.524867 425.524867 425.524867 0.0 0.0 0.0 3424.116744

Question 1: What is the prediction of the number of views of the wiki page on January 20? Round to the nearest integer.

  • 4947

  • 3426 [+]

  • 5229

  • 2744

m.plot(forecast)
../../_images/a01f365cfc81ecc62f4cb809d7115902343d286831888259d5c2ba108e2ed2c3.png ../../_images/a01f365cfc81ecc62f4cb809d7115902343d286831888259d5c2ba108e2ed2c3.png
m.plot_components(forecast)
../../_images/7843b6058cee2712578b61cabbaecc002bf58fc1755e4429475f1490603daaa7.png ../../_images/7843b6058cee2712578b61cabbaecc002bf58fc1755e4429475f1490603daaa7.png
cmp_df = forecast.set_index("ds")[["yhat", "yhat_lower", "yhat_upper"]].join(
    df.set_index("ds")
)
cmp_df["e"] = cmp_df["y"] - cmp_df["yhat"]
cmp_df["p"] = 100 * cmp_df["e"] / cmp_df["y"]
print("MAPE = ", round(np.mean(abs(cmp_df[-predictions:]["p"])), 2))
print("MAE = ", round(np.mean(abs(cmp_df[-predictions:]["e"])), 2))
MAPE =  34.43
MAE =  598.39

Estimate the quality of the prediction with the last 30 points.

Question 2: What is MAPE equal to?

  • 34.5 [+]

  • 42.42

  • 5.39

  • 65.91

Question 3: What is MAE equal to?

  • 355

  • 4007

  • 600 [+]

  • 903

Predicting with ARIMA#

%matplotlib inline
import matplotlib.pyplot as plt
import statsmodels.api as sm
from scipy import stats

plt.rcParams["figure.figsize"] = (15, 10)

Question 4: Let’s verify the stationarity of the series using the Dickey-Fuller test. Is the series stationary? What is the p-value?

  • Series is stationary, p_value = 0.107

  • Series is not stationary, p_value = 0.107 [+]

  • Series is stationary, p_value = 0.001

  • Series is not stationary, p_value = 0.001

sm.tsa.seasonal_decompose(train_df["y"].values, period=7).plot()
print("Dickey-Fuller test: p=%f" % sm.tsa.stattools.adfuller(train_df["y"])[1])
Dickey-Fuller test: p=0.107392
../../_images/24b8eb86954b4766a787b6686b61022f59cc1aafde9f4be9ecd3088538903500.png

But the seasonally differentiated series will already be stationary.

train_df.set_index("ds", inplace=True)
train_df["y_diff"] = train_df.y - train_df.y.shift(7)
sm.tsa.seasonal_decompose(train_df.y_diff[7:].values, period=7).plot()
print("Dickey-Fuller test: p=%f" % sm.tsa.stattools.adfuller(train_df.y_diff[8:])[1])
Dickey-Fuller test: p=0.000000
../../_images/d3590c8df8c9810b5ab9a11fb8d4c38b2a0599d66557a1c40f8c2815e27f8576.png
ax = plt.subplot(211)
sm.graphics.tsa.plot_acf(train_df.y_diff[13:].values.squeeze(), lags=48, ax=ax)

ax = plt.subplot(212)
sm.graphics.tsa.plot_pacf(train_df.y_diff[13:].values.squeeze(), lags=48, ax=ax)
../../_images/7b8c9c7f95ffb087a870e94b64b97ad810a7b658dcd2a26e790530ab1c870d03.png ../../_images/7b8c9c7f95ffb087a870e94b64b97ad810a7b658dcd2a26e790530ab1c870d03.png

Initial values:

  • Q = 1

  • q = 3

  • P = 3

  • p = 1

ps = range(0, 2)
ds = range(0, 2)
qs = range(0, 4)
Ps = range(0, 4)
Ds = range(0, 3)
Qs = range(0, 2)
from itertools import product

parameters = product(ps, ds, qs, Ps, Ds, Qs)
parameters_list = list(parameters)
len(parameters_list)
384
%%time
import warnings

from tqdm.notebook import tqdm

results1 = []
best_aic = float("inf")
warnings.filterwarnings("ignore")

for param in tqdm(parameters_list):
    # try except is necessary, because on some sets of parameters the model can not be trained
    try:
        model = sm.tsa.statespace.SARIMAX(
            train_df["y"],
            order=(param[0], param[1], param[2]),
            seasonal_order=(param[3], param[4], param[5], 7),
            # train the model as is even if that would lead to a non-stationary / non-invertible model
            # see https://github.com/statsmodels/statsmodels/issues/6225 for details
        ).fit(disp=-1)

    except (ValueError, np.linalg.LinAlgError):
        continue

    aic = model.aic
    # save the best model, aic, parameters
    if aic < best_aic:
        best_model = model
        best_aic = aic
        best_param = param
    results1.append([param, model.aic])
CPU times: user 2min 27s, sys: 1.62 s, total: 2min 28s
Wall time: 2min 30s
result_table1 = pd.DataFrame(results1)
result_table1.columns = ["parameters", "aic"]
print(result_table1.sort_values(by="aic", ascending=True).head())
             parameters          aic
66   (0, 0, 2, 3, 0, 1)    14.000000
328  (1, 1, 1, 3, 0, 1)    14.000000
89   (0, 0, 3, 3, 0, 0)    14.000000
165  (0, 1, 2, 3, 2, 1)  4961.632632
332  (1, 1, 1, 3, 2, 1)  4962.841640

If we consider the variants proposed in the form:

result_table1[
    result_table1["parameters"].isin(
        [(1, 0, 2, 3, 1, 0), (1, 1, 2, 3, 2, 1), (1, 1, 2, 3, 1, 1), (1, 0, 2, 3, 0, 0)]
    )
].sort_values(by="aic")
parameters aic
356 (1, 1, 2, 3, 2, 1) 4989.004019
354 (1, 1, 2, 3, 1, 1) 5019.555903
257 (1, 0, 2, 3, 1, 0) 5022.312524
255 (1, 0, 2, 3, 0, 0) 5174.678617

Now do the same, but for the series with Box-Cox transformation.

import scipy.stats

train_df["y_box"], lmbda = scipy.stats.boxcox(train_df["y"])
print("The optimal Box-Cox transformation parameter: %f" % lmbda)
The optimal Box-Cox transformation parameter: 0.732841
results2 = []
best_aic = float("inf")

for param in tqdm(parameters_list):
    # try except is necessary, because on some sets of parameters the model can not be trained
    try:
        model = sm.tsa.statespace.SARIMAX(
            train_df["y_box"],
            order=(param[0], param[1], param[2]),
            seasonal_order=(param[3], param[4], param[5], 7),
            # train the model as is even if that would lead to a non-stationary / non-invertible model
            # see https://github.com/statsmodels/statsmodels/issues/6225 for details
            enforce_stationarity=False,
            enforce_invertibility=False  
        ).fit(disp=-1)

    except (ValueError, np.linalg.LinAlgError):
        continue

    aic = model.aic
    # save the best model, aic, parameters
    if aic < best_aic:
        best_model = model
        best_aic = aic
        best_param = param
    results2.append([param, model.aic])

warnings.filterwarnings("default")
result_table2 = pd.DataFrame(results2)
result_table2.columns = ["parameters", "aic"]
print(result_table2.sort_values(by="aic", ascending=True).head())
             parameters          aic
263  (1, 0, 2, 3, 2, 1)  3292.640166
287  (1, 0, 3, 3, 2, 1)  3294.134383
215  (1, 0, 0, 3, 2, 1)  3294.194179
239  (1, 0, 1, 3, 2, 1)  3296.022150
383  (1, 1, 3, 3, 2, 1)  3296.540788

If we consider the variants proposed in the form:

result_table2[
    result_table2["parameters"].isin(
        [(1, 0, 2, 3, 1, 0), (1, 1, 2, 3, 2, 1), (1, 1, 2, 3, 1, 1), (1, 0, 2, 3, 0, 0)]
    )
].sort_values(by="aic")
parameters aic
359 (1, 1, 2, 3, 2, 1) 3326.066533
357 (1, 1, 2, 3, 1, 1) 3335.179337
260 (1, 0, 2, 3, 1, 0) 3335.555977
258 (1, 0, 2, 3, 0, 0) 3511.184072

Next, we turn to the construction of the SARIMAX model (sm.tsa.statespace.SARIMAX).
Question 5: What parameters are the best for the model according to the AIC criterion?

  • D = 1, d = 0, Q = 0, q = 2, P = 3, p = 1

  • D = 2, d = 1, Q = 1, q = 2, P = 3, p = 1 [+]

  • D = 1, d = 1, Q = 1, q = 2, P = 3, p = 1

  • D = 0, d = 0, Q = 0, q = 2, P = 3, p = 1

Let’s look at the forecast of the best AIC model.

Note: any AIC below 3000 is suspicious, probably caused by non-convergence with MLE optimization, we’ll pick the 3rd-best model in terms of AIC to visualize predictions.

best_model = sm.tsa.statespace.SARIMAX(
    train_df["y_box"],
    order=(1, 0, 2),
    seasonal_order=(3, 2, 1, 7),
    enforce_stationarity=False,  
    enforce_invertibility=False  
).fit(disp=-1)
/Users/kashnitsky/Documents/misc/mlcourse.ai/.venv/lib/python3.13/site-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.
print(best_model.summary())
                                      SARIMAX Results                                      
===========================================================================================
Dep. Variable:                               y_box   No. Observations:                  353
Model:             SARIMAX(1, 0, 2)x(3, 2, [1], 7)   Log Likelihood               -1638.320
Date:                             Thu, 15 Jan 2026   AIC                           3292.640
Time:                                     10:47:24   BIC                           3322.711
Sample:                                          0   HQIC                          3304.652
                                             - 353                                         
Covariance Type:                               opg                                         
==============================================================================
                 coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
ar.L1          0.8153      0.115      7.091      0.000       0.590       1.041
ma.L1         -0.3308      0.124     -2.671      0.008      -0.574      -0.088
ma.L2         -0.2102      0.096     -2.200      0.028      -0.397      -0.023
ar.S.L7       -0.6861      0.041    -16.644      0.000      -0.767      -0.605
ar.S.L14      -0.4749      0.059     -7.990      0.000      -0.591      -0.358
ar.S.L21      -0.2977      0.044     -6.809      0.000      -0.383      -0.212
ma.S.L7       -0.9706      0.059    -16.572      0.000      -1.085      -0.856
sigma2      1705.7076    106.729     15.982      0.000    1496.523    1914.892
===================================================================================
Ljung-Box (L1) (Q):                   0.04   Jarque-Bera (JB):               470.60
Prob(Q):                              0.85   Prob(JB):                         0.00
Heteroskedasticity (H):               0.61   Skew:                             0.94
Prob(H) (two-sided):                  0.01   Kurtosis:                         8.67
===================================================================================

Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).
plt.subplot(211)
best_model.resid[13:].plot()
plt.ylabel(u"Residuals")

ax = plt.subplot(212)
sm.graphics.tsa.plot_acf(best_model.resid[13:].values.squeeze(), lags=48, ax=ax)

print("Student's test: p=%f" % stats.ttest_1samp(best_model.resid[13:], 0)[1])
print("Dickey-Fuller test: p=%f" % sm.tsa.stattools.adfuller(best_model.resid[13:])[1])
Student's test: p=0.293588
Dickey-Fuller test: p=0.000000
../../_images/0d28f9ba8cd31e195d55810180abf60917ce9ca47d0041c8dd3a75e89b32da14.png
def invboxcox(y, lmbda):
    # reverse Box Cox transformation
    if lmbda == 0:
        return np.exp(y)
    else:
        return np.exp(np.log(lmbda * y + 1) / lmbda)
train_df["arima_model"] = invboxcox(best_model.fittedvalues, lmbda)

train_df.y.tail(200).plot()
train_df.arima_model[13:].tail(200).plot(color="r")
plt.ylabel("wiki pageviews");
../../_images/d2bdc4b02bac16404b73f1ee718ec1d9dc166cf21516bdb50c9916dee7d9c47d.png